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Abstract 

In recent years, knowledge-based systems have become one of the most 
popular approaches for solving engineering problems. Along with the 
rising complexity of the problem, knowledge management, acquisition, 
representation, inferencing, and refinement become increasingly difficult. 
Conventionally, tasks of knowledge acquisition and representation are 
accomplished separately and sequentially. Knowledge engineers are respon­
sible for preparing question patterns and setting up personnel interviews 
with domain experts for knowledge acquisition. All acquired knowledge 
is then manually interpreted, verified, and transformed into a predefined 
representation scheme. In this chapter, a new methodology for knowl­
edge acquisition, termed Knowledge Acquisition based on Representation 
(KAR) is presented. Instead of treating acquisition and representation sep­
arately and sequentially, KAR deals with acquisition and representation in 
an integrated manner. All knowledge acquired with KAR is verified and 
transformed into a representation scheme which is ready for inferencing. 
The major objectives of KAR are to facilitate the knowledge acquisition 
process, to increase its reliability, and to reduce the development cost of 
the model bases. 

1 Introduction 

Knowledge acquisition is the main bottleneck in the design of expert 
systems. Several methodologies have been introduced to help eliciting 
knowledge from experts. The most common method for knowledge acqui­
sition is an interview [Hart 1985). In face-to-face interviews, experts are 
asked questions and are expected to give informative answers. All details 
of the interviews must be recorded for further manual analysis and con­
version so that essential knowledge can be extracted and translated into 
a representation scheme. Problems have been discovered with the inter­
view approach. For example, experts are often unaware of specific details 
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of the particular problem; experts are unable to spell out their knowledge; 
knowledge engineers are unable to query all the essential knowledge; ex­
perts misunderstand knowledge engineer's questions because of different 
interpretations of the terminology. All the above situations may result in 
unnecessary, duplicate, and conflicting knowledge. 

Some of the interview technique problems are resolved by a more struc­
tured approach termed the protocol analysis [Waterman and Newell 1971]. 
With the protocol analysis, experts comment on specific examples from a 
problem domain. For example, experts may look at a specific design ex­
ample and comment on the question: "Why is the design good or bad?" . 
This is different from the interviewing approach which may tackle the same 
problem by asking question patterns such as "What made the design good 
or bad?". Often, it is easier to comment on a specific example in the proto­
col analysis rather than to answer the general questions in the interviewing 
process. In protocol analysis, knowledge is extracted from detecting general 
patterns, e.g., experts may always examine one particular characteristic 
first. 

Computer induction [Ritchie 1984] is another technique to deal with 
knowledge acquisition. With induction, experts provide a set of examples 
of cases (called training sets) together with attributes considered in design 
decision making. Then a program is applied to induce rules from those 
training sets. The quality of the induced knowledge depends on the selection 
of training sets, attributes, and the use of induction algorithms. 

Much of the difficulty in knowledge elicitation lies in the fact that experts 
cannot easily describe how they view a problem. This is essentially a psy­
chological problem. Kelly viewed a human being as a scientist categorizing 
experiences and classifying his own environment. Such a description is very 
suitable for an expert in his knowledge domain. Based on Kelly's personal 
construct theory [Kelly 1955], the repertory grid technique [Boose 1988] 
was developed for knowledge acquisition. Given a problem domain, experts 
build up a model consisting of elements and constructs which are consid­
ered relevant and important. The constructs are similar to attributes except 
that they must be bipolar (e.g., good/bad, true/false, strong/weak). Ele­
ments are analogous to examples in induction. The grid is a cross-reference 
table between elements and constructs. For example, in acquiring knowl­
edge for programming evaluation, experts may build up the grid table with 
a number of typical programs (elements) and attributes (constructs) such 
as modularity, testability, portability, meaningful variables, and readable 
layout. Each square of the grid table is then filled with a quality value or 
index. Finally, the quality of programs is determined by experts based on 
the summing quality index. 

Although methodologies such as interviewing, protocol analysis, obser­
vation, induction, clustering, prototyping [Waterman and Newell 1971, 
Ritchie 1984, Hart 1985, Kessel 1986, Gaines 1987, Gaines 1988, Olson 
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and Rueter 1987] have been proposed to help in eliciting knowledge from 
experts, none of them is commonly accepted. Different problem domains 
may require different acquisition strategies. 

To reduce errors (e.g., misinterpretation of the interviewed data) caused 
by the human intervention, a more efficient and reliable approach for 
acquiring knowledge is to automate the elicitation process based on a cer­
tain representation scheme which will completely and efficiently denote 
all the domain traits and encompass all essential knowledge. Knowl­
edge acquisition guided by the structure of a knowledge representation 
is termed Knowledge Acquisition based on Representation (KAR) [Hu 
et al. 1989]. To distinguish it from conventional approaches, KAR exploits 
the structural nature of a representation scheme to motivate acquisition 
activities. 

2 Requirements for Design Modelling 
Representation Schemes 

Before selecting a good representation scheme to serve as the basis of 
KAR, let us first examine requirements for a good design knowledge 
representation scheme. Reviewing the common traits in system design, 
structured techniques are used to reduce the complexity of the design 
process. Common design traits found in modern design approaches are: 

Hierarchy: The use of hierarchy involves dividing a system into subsystems 
and then repeating this operation on the subsystems until the complexity 
of subsystems is at an appropriate, or desired, abstraction level. 

Modularity: Modularity helps designers to reduce the complexity of system 
models and clarify an approach to a problem. A modular design facilitates 
flexibility and future modifications. The modular design approach also 
aids in team design. 

Regularity: Employing regular structure to simplify the design process is 
gaining its popularity. Regularity can exist at all levels of the design 
hierarchy. As seen in computer system design, uniform transistors are 
used at the circuit level; identical gate structures are employed at the 
logic level. At a higher level, a multi-processor system is designed with 
identical processors [Weste and Eshraghian 1985]. 

In general, a good knowledge representation scheme for system design 
applications must be able to denote the above properties within its rep­
resentation structure. Furthermore, the knowledge representation scheme 
must be able to capture both static and dynamic knowledge of the system 
such as: 

Static knowledge: 
General properties of objects. 
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Taxonomy / decomposition of objects. 

Rules for design synthesis. 
Dynamic knowledge: 

Model descriptions of objects. 
Procedures for generating design alternatives. 
Procedures for design validation and evaluation. 

A good knowledge representation scheme should also facilitate knowledge 
management, efficient knowledge acquisition, inferencing, and refine­
ment. Finally, knowledge reflected by the representation scheme must be 
transparent to domain experts, knowledge engineers, and system users. 

To qualify for KAR, a knowledge representation scheme must satisfy the 
following requirements: 

1. The scheme is able to query (or generate question patterns automati­
cally) knowledge about the domain. 

2. The knowledge acquired from domain experts can be automatically and 
directly translated into an internal representation which is ready for 
inferencing. The internal representation of knowledge is transparent to 
domain experts and system users. 

3. The structure of the knowledge representation scheme provides efficient 
and systematic mechanisms for knowledge organization, inferencing, and 
refinement. 

4. The knowledge representation scheme must possess axioms or operations 
to detect conflicting information, to remind that essential knowledge may 
be missing, and to eliminate repeated or unnecessary knowledge. 

The increasing demand on the quality of knowledge-based systems has 
resulted in knowledge representation becoming a major topic in AI re­
search. Although various schemes [Quillian 1968, Minsky 1975, Schank 
and Abelson 1977, Nilsson 1981, Zeigler 1984, Shastri 1988] have been 
introduced to help representing and managing knowledge, none of these 
conventional representation schemes satisfies all requirements that qualifies 
a representation scheme for the KAR approach. We have augmented the 
system entity structure [Zeigler 1984] into an integrated and entity-oriented 
knowledge representation scheme, termed the Frame and Rule-Associated 
System Entity Structure (FRASES) [Hu et al. 1989]. FRASES is a scheme 
that combines concepts ofthe system entity structure, frame [Minsky 1975], 
and production rules [Newell and Simon 1972]. By exploiting the reason­
ing flexibility provided by production rules, the efficiency in representing 
declarative knowledge offered by frames, and the visibility and hierarchy 
supported by the system entity structure, FRASES is a powerful and ef­
ficient scheme for managing domain knowledge supporting design model 
development. 



5. KAR for Design Model Development 81 

3 Structure of FRASES 

FRASES is a superclass of the system entity structures that encom­
passes the boundaries, decompositions, and taxonomic relationships of the 
system components being modelled. All axioms and operations defined orig­
inally for managing system entity structures are also present in FRASES 
representation [Hu et al. 1989, Rozenblit et al. 1989]. 

Each entity of FRASES signifies a conceptual part of the system which 
has been identified as a component in one or more decompositions. Each 
such decomposition is calied an aspect. In addition to decompositions, there 
is a relation called specialization. It facilitates representation of variants for 
an entity. Each specialization variant inherits properties and substructures 
from the parent entity to which it is related. 

A typical example of FRASES for representing a tightly-coupled multi­
processor system is shown in Figure 1. As shown in the figure, each entity of 
FRASES is associated with an Entity Information Frame (ElF). An ElF is a 
generalized property list [Winston 1984] which can be divided into discrete 
elements called "slots". Each slot describes an attribute which may, in turn, 
contain one or more facets such as "value", "default", "if-needed", or "if­
accessed". Every occurrence of an entity has the same Entity Information 
Frame (ElF) and an isomorphic substructure. During application, knowl­
edge contained in the ElF is extracted and interpreted by the inference 
engine for design reasoning [Rozenblit et al. 1989]. An Entity Information 
Frame (ElF) is a structure: 

(M, ATTs, DSF, ESF, CRS, CH) 

where 

M: is the name of the associated model. 
ATTs: are attributes of the entity. 
DSF: is the design specification form. 
ESF: is the experiment specification form. 
CRS: are constraint rules for design synthesis. 
CH: are children entities of M. 

With FRASES representation, behavioral knowledge about objects is 
described by simulation models stored in the model base. M represents 
the key to access a model of the entity to which ElF is attached. ATTs 
are attributes used to characterize the associated object. Attributes of an 
entity are partitioned into two groups, i.e., static and dynamic [Rozenblit 
and Hu 1988]. Static attributes are variables used to describe properties of 
an object that do not change over time. Dynamic attributes are related to 
the dynamic behavior of the models represented by entity objects. 

Design Specification Form (DSF) accepts the specification of design ob­
jectives, constraints, and criteria weighting schemes. The contents of DSF 
define the system requirements that must be satisfied by the system being 
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(b) FRASES representation 

FIGURE 1. A tightly-coupled multi-processor system. 

designed. The DSF information is used to guide the synthesis of design 
model structures. Each entity of FRASES has its own DSF. Once compo­
sition trees (Le., a decomposition tree with information about the coupling 
schemes aniong model components) are generated based on the knowl­
edge provided in the eRS (see below) slot, users are requested to define 
the simulation experiment in the Experiment Specification Form (ESF). 
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Finally, simulation is activated via automatic extraction and coupling of 
simulation models [Hu 1989]. 

Experiment Specification Form (ESF) is applied to accept the specifica­
tion of simulation requirements such as an arrival process, event structure, 
and simulation control scheme. ESF provides information to direct the au­
tomatic generation of experimental frames [Hu 1989]. Again, ESF is placed 
along with entity nodes of a composition tree. For illustration, typical DSF 
for design of a processor of a tightly-coupled multi-processor system is 
shown in Figure 2. With the specified DSF, the processor should be ca­
pable of executing 10 Million Instructions Per Second (MIPS), the cost of 
the processor is less than 300 dollars, and the power consumption of the 
processor must be less than 0.5 /Lwatts. Figure 3 shows a simplified form 
of a simulation experiment for the processor. The simulation specification 
indicates that the input arrival rate for the first 100 events will follow the 
Poisson distribution with the mean value of 10. For subsequent events, the 
normal distribution with mean of 1 will be employed. Each event is com­
posed of a symbolic identification and numerical workload. Simulation will 
be executed for 300 events. For each 50 system time units, the measurement 
of performance indices must be reported. 

Constraint Rules for Synthesis (CRS) contains heuristic rules for con­
figuring design model structures. Formally, selection constraint rules for 
pruning alternative are associated with specialization nodes, and constraint 
rules for synthesizing components are associated with aspect nodes. Rozen­
blit and Huang have defined model development driven by production rules 
in [Rozenblit and Huang 1987]. 

FRASES is a generative knowledge representation scheme which orga­
nizes the knowledge represented into an entity-based, hierarchical structure 

Design Constraints I 

«> MIPS 10) « cost 300) 
« power-consumption 0.5) ) 

Design Objectives. 

«max MlPS) 
(min cost power-consumption) ) 

Criteria Weighting I 
(:rw cost MIPS power-consumption) 

FIGURE 2. Design specification form. 
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FIGURE 3. Experiment specification form. 

and allows the represented knowledge to be refined and inferred efficiently 
[Rozenblit et al. 1989]. 

4 KAR Based on FRASES 

FRASES is a complete knowledge representation scheme for system de­
sign application, which conveys the declarative knowledge (structure and 
attributes) as well as procedural knowledge (production rules for design 
synthesis, verification, and evaluation). With the well- [defined axioms and 
operations, FRASES satisfies all the requirements of the KAR approach 
as follows: 

1. The entity-oriented hierarchical structure of FRASES can be easily 
employed to represent design structures characterized by modularity, 
hierarchy, and regularity. By employing query rules based on the struc­
tural nature of FRASES, question patterns are generated automatically 
to acquire knowledge from domain experts. 

2. The acquired knowledge is directly translated into an internal repre­
sentation of Entity Information Frame (ElF) in the format ready for 
inferencing. This reduces human intervention to the minimum. Due to 
the graphic interface of FRASES, knowledge represented with FRASES 
is transparent to domain experts and system users. 

3. FRASES provides an efficient scheme for knowledge representation, re­
finement, and inferencing by partitioning the global knowledge base into 
hierarchical and entity-oriented frame objects. 
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4. Contradiction, duplication, missing or incompleteness of essential knowl­
edge can be detected by checking verification rules associated with each 
query rule. In other words, axioms and operations of FRASES are 
checked with verification rules to assure the consistency and validity 
of knowledge. 

Selecting FRASES to conduct KAR, the query process can be depicted 
by state transitions as shown in Figure 4. The knowledge acquisi­
tion starts from querying knowledge about the problem domain. Once 
the problem domain is specified, the acquisition process falls into the 
Entity / Aspect/Specialization (EAS) loop. Component information and 
knowledge about determining design parameters are acquired at the "En­
tity" phase. Knowledge about functional decomposition, coupling, and 
synthesis constraints is elicited in the "Aspect" phase. Knowledge about 
alternatives and selection rules is acquired in the "Specialization" phase. 
Experts may choose the most appropriate design approach (e.g., top-down, 
bottom-up, and mixed) based on the characteristics of design problems by 
indicating processing priority between aspect and specialization nodes [Hu 
1989]. At each design abstraction, the most crucial component is indicated 
by assigning the highest processing priority. The EAS loop will continue 
until desired level of abstraction is reached. After the FRASES structure 
is acquired, system identifies entities that require a corresponding behav­
ior model and starts acquiring behavioral features for each entity. At each 
acquisition state, verification rules are automatically applied for checking 
knowledge inconsistency. 

In Figure 5, a simple comparison between the conventional knowledge 
acquisition and KAR with FRASES is given. The diagram in the mid­
dle column delineates the acquisition process for developing a knowledge 
base. Several advantages are expected from using KAR with FRASES for 
knowledge acquisition: 

Efficiency: Question patterns necessary to acquire design knowledge for de­
composition, taxonomy, pruning, and synthesis of systems are generated 
automatically. Knowledge provided by users is verified automatically by 
applying appropriate verification rules to assure consistency of knowl­
edge. With FRASES, verified knowledge is translated directly into 
a ready-for-inferencing Entity Information Frame (ElF) by a number 
of macros defined for managing frame objects [Hu 1989]. Once the 
knowledge acquisition process is completed, experts may practice a 
number of design applications by providing information required for 
Design Specification Forms (DSF) and Experiment Specification Form 
(ESF). By examining generated designs, experts can justify if knowl­
edge refinement is required or if the design reasoning is performed 
correctly. 

Flexibility: One of the problems found in conventional knowledge acqui­
sition methods is that they only appear efficient in a specific problem 
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FIGURE 4. Query transition of KAR with FRASES. 

domain. With the flexibility of FRASES, KAR can be used for a large 
class of systems exhibiting hierarchical and modular structure. 

Manageability: The entity-based, hierarchical structure allows the knowl­
edge represented to be examined and modified easily. During the 
knowledge acquisition process, users are allowed to modify both the 
structure and ElF contents of the FRASES tree. 

Cost-Effectiveness: Unlike conventional acquisition approaches which re­
quire human intervention and labor-intensive preparation, interviewing, 
verification, translation, and organization, the complex process of knowl-
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FIGURE 5. Interviewing vs. KAR with FRASES. 

edge base development is automated and efficiently handled by KAR ap­
proach. The fast turnaround of knowledge base development highly 
reduces the cost of knowledge-based systems. 

5 Query Rules of FRASES 

In order to automate the generation of question patterns for constructing 
a FRASES tree, query rules are first defined in a database and linked to 
the acquisition tool. On each acquisition iteration, appropriate question 
patterns will be generated based on interpreting associated query rules. In 
general, query rules of FRASES are classified into four types: 

I. Entity Query: 
A. Querying Problem Domain (E-PD). 
B. Querying Multiple Decomposition (E-MD). 
C. Querying Design Attributes (E-ATTS). 

1. Static Attributes (E-SATTS). 
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2. I/O Ports (E-PORTS). 
3. Design Parameters (E-DPARA). 
4. Performance Indices (E-PIX). 
5. Processing Priority (E-PP). 

D. Querying Specializations (E-S). 
E. Querying Aspects (E-A). 

II. Specialization Query: 
A. Querying Specialization Variants (S-E). 
B. Querying Selection Rules (S-SEL). 

III. Aspect Query: 
A. Querying Subcomponents (A-E). 
B. Querying Synthesis Rules (A-SYN). 
C. Querying Coupling Information (A-COUP). 
D. Querying Design Priority (A-DP). 

IV. Model Query: 
A. Querying Model Behavior (E-M). 

Each query rule is associated with three explanation patterns (e.g., 
WHY, WHAT, and HOW) as follows: 

WHY is the question asked? 
WHAT does this question mean? 
HOW to answer this question? 

For example, the S-SEL rule of a specialization node has three ex­
planation rules, termed S-SEL.WHY, S-SEL.WHAT, and S-SEL.HOW, 
to explain "Why selection rules are required for a specialization node?", 
"What a selection rule means?", and "How to specify a selection rule?". 

6 Verification Rules of FRASES 

In order to assure the consistency of FRASES representation, verification 
rules based on axioms and operations of FRASES must be checked after 
each query rule is applied. In other words, to assure the consistency of 
knowledge provided by users, one or more verification rules will be ap­
plied on each query iteration. Whenever conflicting or invalid information 
is detected, error messages will be signaled to users so that an appropriate 
correction or modification can be made. For logical errors (e.g., conflicting 
information), the system will explain which axiom or operation of FRASES 
has been violated and how these problems can be solved. On the other 
hand, if a physical error (e.g., typos such as a missing token "IF" in the 
rule specification) is found, the system will correct the error by referring to 
the explanation rules associated with the entity (e.g., S-SEL.HOW explains 
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how to specify selection rules for a specialization node). If the user is not 
satisfied with the modification made by the system, he will be requested 
to give a correct input. 

To verify logic errors, each query has verification rules which are em­
ployed to assure the consistency of the knowledge being represented. They 
are: 

I. Query Problem Domain (E-PD) 
Verifying Domain Existence {VDE}: If an old domain existed, users are 

allowed to use, to discard, or to save the old domain knowledge. 
II. Query Multiple Decomposition (E-MD) 

Verifying Variation Range {VVR}: What is the maximum and minimum 
number of entities allowed in the system. 

III. Query Design Attributes (E-SATTS, E-DPARA, E-PIX): 
Verifying Attached Variables {VA V}: No two variables have the same 

name. 
Verify Inherited Knowledge {VIK}: All properties and substructures in­

herited through a specialization (Le., taxonomy) must be validated 
for the current entity. This assures knowledge consistency for future 
pruning operations. 

IV. Query Selection Rules (E-SEL), Query Synthesis Rules (A-SYN), and 
Query Coupling Information (A-COUP): 
Verifying Knowledge Hierarchy {VKH}: Knowledge contained in an 

Entity Information Frame is related only to itself and its substructures. 
Verifying Conflicting Knowledge {VCK}: Dead-ends (e.g., none of the 

specialization variants is selected) and inconsistency (e.g., coupling 
two output ports together) should be avoided. 

Verifying Concise Form {VCF}: Rules which are logically related should 
be combined into a concise form to reduce the complexity of knowledge 
bases. 

V. Query Specialization (E-S) and Query Aspects (E-A): 
Verifying Uniformity {VUF}: Any two nodes with the same labels have 

identical Entity Information Frames and isomorphic substructures. 
Verifying Structure Hierarchy {VSH}: No labels appear more than once 

down any path of the FRASES tree. 
Verifying Valid Siblings {VVS}: No two entities under the same node 

have the same labels. 
VI. Query Subcomponents (A-E): 

Verifying Uniformity {VUF} 
Verifying Structure Hierarchy {VSH} 
Verifying Valid Siblings {VVS} 

VII. Query Specialization Variants (S-E): 
Verifying Uniformity {VUF} 
Verifying Structure Hierarchy {VSH} 
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KAR/EXPERT INTERACTION 

KAR> What is your problem domain (E-PD) ? 
=> Tightly-Coupled-System 

KAR> What kind of static attributes that you want to add 
to the system (E-SATTS)? 

=> (designer Jeff) (date 4/18/89) (place UA) 
KAR> What kind of design parameters that you want to 

consider at this design level (E-DPARA)? 
=> cost size 

KAR> What kind of performance indices are considered 
for evaluating a Tightly-Coupled-System (E-PIX)? 

=> response-time thruput 

KAR> Can you classify a Tightly-Coupled-System based 
on certain specialization (E-S)? 

=>why 
KAR> -» This question is used to query how experts 

-» classify variants of the asked entity. For 
-» example, a computer network can be clssified 
-» into RING, BUS, and TREE based on Topology. 

KAR> Can you classify a Tightly-Coupled-System based 
on certain specialization? 

=> nil 
KAR> Can you decompose a Tightly-Coupled-System 

based on certain aspect (E-A)? 
=> module 

• • • 
KAR> What are these subcomponents when you decompose 

a Tightly-Coupled-System based on module (A-E)? 
=> Processing-Elements Shared-Memory 

• • • 

KAR> Does the number of Pracessing-Elements vary with 
design requirements (E-MD)? 

=> yes ' 
KAR> Specify the range for the number of Processing­

Elemel!ts? 
=> 0 64 

...... mUltiple decomposition 

• • • 
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FIGURE 6. KAR with FRASES for tightly-coupled multi-processor system. 
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KAR> Can you classify a Cache based 
on certain specialization (E-S)? 

=> access-media 

KAR> What are these alternatives when you classify 
a Cache based on access-media (S-E)? 

=> Real-Address Virtual-Address 

KAR> Can you specify selection rules for 
determining access-media (S-SEL)? 

=> r1: if desired system expandability = high 
then select Virtual-Address. 

r 2: if desired system expandability = low 
then select Real-Address. 

• • • 
KAR> Can each Processing-Element be decomposed 

into (Processors Real-Address-Caches) or 
(Processors Virtual-Address-Caches)? 

=> yes 
;;; verifying pruned knowledge (VPK) 

• • • 

KAR> Can you classify a Real-Address cache 
based on certain specialization (E-S)? 

=> nil 
KAR> Can you decompose a Real-Address cache 

based on certain aspect (E-A)? 

=> nil 

;;; satisfied with the level of design abstraction 

• • • 
KAR> Can you describe behavior model for 

Real-Address-Cache (E-M)? 

• • • 

FIGURE 6. Continued 
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Verifying Valid Siblings (VVS) 
Verifying Combinations of Knowledge (VCK): New knowledge ob­

tained from combinations of multiple aspects and/or specializations of 
FRASES must be confirmed by the user. Constraints will be acquired 
to indicate invalid combinations. 

Verifying Pruned Knowledge (VPK): Specialization variants should be 
valid for future pruning operations. 

Verifying Transformed Knowledge (VTK): New knowledge transformed 
from the current structure of FRASES must be confirmed by the user. 

With the rule base approach, verification rules defined for each query 
pattern can be flexibly refined by updating rules instead of reprogramming 
the system. 

7 Example 

To illustrate the operation of KAR with FRASES for knowledge ac­
quisition, part of the query process for design of a tightly-coupled 
multi-processor system is illustrated in Figure 6. The acquisition process 
begins with generating a query about the problem domain. This query is 
activated by the E-PD structure incorporated in FRASES. After the an­
swer is generated, FRASES converts it to its internal frame representation 
as shown in the right column of Figure 6. 

The next step is to substantiate the Entity Information Frame. Relevant 
information is elicited through questions about the design parameters and 
performance indices. The Tightly-Coupled System is then decomposed in 
to Processing Elements and Shared Memory by answering decomposition­
oriented queries (E-A). Notice that there was a negative response (nil) to 
a query eliciting information about a possible taxonomy of the system. 

The acquisition process is carried out until a level of hierarchical speci­
fication that satisfies the modeller is reached as shown in the last section 
of the left column in Figure 6. 

8 Conclusions and Future Research 

Conventional knowledge acquisition methods require a significant human 
effort to prepare, verify, translate, organize, and validate knowledge. When 
the complexity of systems grows, conventional methods become inefficient. 
To improve the efficiency of knowledge acquisition and to reduce the cost 
of knowledge-based systems, a new methodology called the Knowledge Ac­
quisition based on Representation (KAR) is proposed. To realize KAR 
we have developed a knowledge representation scheme, termed Frame and 
Rule-Associated System Entity Structure process by using the automatic 
approach via exploiting the structural nature of a representation scheme. 
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With the KAR approach, both the cost and time for developing a knowl­
edge base from which a design model construction rules are derived are 
drastically reduced. 

Topics for future research include: 

1. To incorporate psychological methods in the KAR methodology for 
a.) developing the best query rules with which domain experts are 
more willing to share their knowledge; b.) determining the reason a user 
has asked a question so that a customized response can be generated; 
and c.) verify the degree of validity of knowledge with respect to the 
psychological factors. 

2. Upgrading the KAR interface with a natural language processor for 
design specification and answering system queries. 
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